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ABSTRACT:

ek hanism of seismi i 3 : Ko
_ Mec STl SIMIC strain in buried pipelines based on field observations

Investigations of pipeline damage caused by the past earthquakes in Japan

suggested that non-uniformity of superficial ground condition has a close correlation

with the extent of damage.

In order to verify the relationship between the

mn-uniformity and the‘deformation in the ground, data obtained through earthquak
Obsemations at four sites and experiments on two dynamically similar models Efa >
qwund-pipe.SYSFem were reexamined by using a parameter which was defined as the
,Kmruniformlty index so that it could properly reflect the mechanism of straiﬁ due to

ron-uniform ground condition.

A positive correlation was proved between the

nm-unifomity a1:1d the strain in the pipeline and the non-uniformity index was found to
he useful to estimate damage susceptibility of pipelines.

1 INTRODUCTION

peformation in an underground pipeline 1is
caused by so-called horizontally incohe-
rent ground motion. The most extreme
incoherence of ground motion may be
represented by fault movements and land-
gslides, but they are not very common
causes of seismic damage to pipelines
especially in Japan where most big cities
are located on relatively soft tertiary or
alluvial deposits which do not show
remarkable fault activities.

As one of the causes of this incoherent

ground motion, Newmark (1967) proposed a

strain in the ground associated with a
horizontally propagating earthquake wave.
However, this idea of strain due to
propagating wave contains a self-
contradiction: if a pipeline should
undergo failure, the strain in the ground
should necessarily be greater than its
elastic limit., This implies that such a
wave that causes failure to a pipeline
cannot propagate any longer as an elastic
wave, |

On the other hand, investigations of

| mﬁ to water and gas distribution

Systems during major earthquakes in Japan
- Suggested that the degree of complexity Or
; if‘ﬂmﬂ' of superficial ground

e has a strong correlation with

sk L"?‘*'

Studies of pipeline's seismic behavior
based on earthquake observations (Nishio
et al.1980, Tsukamoto et al.1984, Nishio
and Tsukamoto 1985) and model experiments
(Nishio et al.1983) have pointed out that
the non-uniform movement of non-uniform
surface soil layer in response to S-waves
which are almost vertically incident to
the surface layers produces strains in the
ground in the horizontal direction which
could cause failure to pipelines depending
on the degree of non-uniformity of the

surface soil layer.
In the present study, an index —

non-uniformity index — 1s introduced for
characterizing the surface soil layer 1in
rerms of non-uniform seismic behavior, and

the relationship between the non-
uniformity index and the probable maximum

strain in a buried pipeline 1s discussed
on the basis of the data obtained during

the earthquake observations and model
experiments by Nishio et al. (1980) and

others.

5 MODELS FOR MECHANISM OF SEISMIC STRAIN
IN BURIED PIPELINE

Roughly speaking, two kinds of mechanism
of seismic strain in the ground is con-
sidered. One is strain due to delay in
phase in the axial direction associated

with a horizontally propagating wave.
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Another model of strain generation
me?hanism employs a hc«rizontally non-
unlfo?m structure of surface sojl deposit
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very often: the seismic response of a
re is given approximately by a Vs = (G/P

response spectrum which is calculated by

min +hat the structure 1is a single- n . 5

assu g d t A . . . - E —""—LqH g = 2 'iE"

degree-—of—-free om system. soil deposit My J

~an also be assumed as a single-degree- .
: (undamped natural

of-freedom system, the natural period(T) period)

gfbﬁﬁch is given by the equation

Lo
. -'Or'\-m -Gﬂ-1 {Vgln.l}

= Mass

I

density m
Kk = springconstant
h

- damping constant

Pig. 1 Layered soil deposit and 1ts
4H 4 equivalent expression with
1 v (3) single-degree-of-freedom system

T =

[lng k=

1 si

is thickness of i-th layer of the

where H.
l s " B
is S-wave veloclity 1n e

soil deposit and vsi

the i-th layer e - L )
2 shows an example of acceleration

for diluvial and (- o O o 3 =3
21luvial subsoils which were developed by A

guribayashi et 31.(1972) on the basis of
592 earthquake wave cOm onents recorded on |
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diluvial and stiff alluvial subsoils (in

this figure, only spectra for a damping / —
constant of h=0.1 are jllustrated) . Based

on the mean values of the above twoO
spectra, a displacement response spectrum
is obtained as il1lustrated 1n Fig. 2 BY

using the following equation.
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The dotted line in Fig. 2 shows an
approximation of the above obtained
spectrum by three straight lines which are 0.}
expressed as functions of T by the 5
following eguations. g |
X
for T & 0.25 I 8,47T:2L':; |
Fusr 06-28 < P & 0.8, SD . 2308  (5) 0.1 0.5 1.0 o

fO'r 0. < D —
8 <T , S = 2.13T | N

Then, by knowing the distribution of the

value of T in a certain site, the varia-
| unit and Alluvial (stiff)‘sub-501l

| tion of displacement response per ' .
acceleration can be determined. (after Kuribayashi et al.1972)
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ofiles of the four observa-
rion sites and the two‘graunds for model
experlments are sh?wn int Fi1g. 3. Each
; n be approxlmately regarded as
. «¢+ing of a homogeneous soll deposit

common modulus of rigidity
+he deposit since the SPT

throughout

N-value is very small throughout the
entire depth of the deposit and its
geviation is also very small. Above all,
the ground for Model A showed an extremely
11 as uniform rigidity throughout

10w as we
ce deposit while its base rock

<howed 2 very high rigidity, in contrast.
The ground for Model B 1s not an actually
existing one but an imaginary (idealized)
one considering abrupt change in the depth
of surface€ deposit; the same rigidity of
surface layer as that for Model A ground

the Model B ground. The
of each surface layer can

the upper boundary of the
Fig. 3 where SPT N-value
locity shows distinctly

n the upper layer.

ear wave velocities in the

surface layers of Sites 1-3 were deter-=
vg = 4f H, where

mined from the equation,

¢ is natural frequency based on micro-
t%em-r measurement and H is average depth
of the surface layer which is measured on
each soil profile 1in Figs. 3a - 3¢C. The
shear wave velocity for gite 4 was deter-
mined by the actual measurement (both PS
logging and Rayleigh Wave Technique were
used). That for the modeled grounds Was
also determined by the actual

Then the non-uniformity ind
be determined by the procedure
below.
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Fig. 4 Concept of determining natural
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soil profile data

(This example is for the case
where the surface layer is
homogeneous with respect toO

rigidity in terms of VS)

value of V already known, the natural
for the j-th sample point 1S

determined by using the equation
4H .
i = —_l (6)
J Vg

se displacement of the

Then, the respon
ample point,

surface layer at the j-th s
LR 5 determined referring to a

d?gplacement response SPectrum.suCh as

shown in Fig. 2 O given Dby Egs. {5) .
Finally, the non-uniformity index for

the site 1s calculated from the following

equation.

= e i
=f L e B8 -)2/n (7)
NI njElSDj (j=l DJ

£ the sample

e n is the number O
This equation is exactly of the

ym as that defining the standard
statisticC variable.

The above procedure Was applied to the
six surface layers, shown in Fi1g. 3, and
the following values were obtained.

0.114 [cm/100 gal)

wher
points.

same fo
deviation of &

gite 1, Nl =

- 0.031

3, 0.110

4, 0.091
Model Ay 1.330
", 1.242
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a very gimilar idea has been applied by
5 -‘_Hi':ghiﬁ (1981) to the invenstigation of the
._ &Iat_-anship between damage ratio and

o5 condition for the damage to buried

_ 'I.thquﬂke in Japan. He assumed that the

geismiC displacement of an arbitrary point

'an-the grﬂund takes a random value accord-
normal distribution with a

ing to -2 i . . T s .
| standa.rd deviation 0. he pipeline damage
- assumed to occur when the relative

ement between two points on the

nd at a certain distance exceed

f 1ine's ability of absorbing the
P tudinal displacement. This relative
displacement of ground can also be shown
ro take the value according to a normal
distribution with a standard deviation of
./50. Based oOn this assumption, he could
Jescribe very well a positive relationship
petween ground condition, piping material
(or type of fitting) and damage ratio.

a1l studies that have been related above
— namely, studies based on earthquake
observations, stochastic theory and damage
ijnvestigation — are based on almost the
same concept of lateral variation in
seismic response of surface soil layer.
only this concept will give a good reason
to the seismic damage to buried pipelines
in apparently non-discontinuous ground
observed during the past strong

earthquakes in Japan.
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5 3 Estimation of damage susceptibility
based on NI

Conventional thread jointed steel pipes
are known to break at the threaded part
when tensile strain at non-threaded part
has scarcely reached the yield strain of
steel because of a reduced sectional area
at the threaded part; the yield strain of
common mild steel is less than 1,500 u.

0, € = 1,500 can be regarded as a kind
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about 0.3, 1f a moie

Smallgr. A less ductile material

for piping such as asbestos cement will
also give rise to a lower critical NI-
value than that for a steel pipeline.

6 CONCLUSTONS

It has been clearly demonstrated that
non-uniformity of seismic response of the
ground (surface layer) due to lateral
non-uniformity of its structure has a
?]ose correlation with the seismic strain
in the ground (therefore, in the pipeline
as well). The proposed non-uniformity
index was shown to be effective in
characterizing a surface soil layer in
tgrms of damage susceptibility of pipe-
lines. This characterization of damage
susceptibility will help to plan the
earthquake countermeasure effectively for
underground lifeline systems such as water
distribution networks, sewage systems and
gas distribution networks.

The data which will be obtained at Site
5 where an earthquake observation 1is
presently being carried out are expected
to reinforce the above conclusions.

Since earthquake observations are
considerably expensive as well as hard to
carry out because of the difficulty of
finding out suitable locations, numerical
simulations on seismic responses of
existing surface soil layers and sub-
sequent axial strains in the ground or a
pipeline buried in it will be an effective
~lternative means of verifying further the

relationship between the proposed NI-
values and the seismic strain in the

pipeline.
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